改进的DBSCAN聚类算法在社会化标注中的应用  被引量:3

Clustering Social Tags with Improved DBSCAN Algorithm

在线阅读下载全文

作  者:熊回香[1] 叶佳鑫 蒋武轩 Xiong Huixiang;Ye Jiaxin;Jiang Wuxuan(School of Information Management,Central China Normal University,Wuhan 430079,China)

机构地区:[1]华中师范大学信息管理学院,武汉430079

出  处:《数据分析与知识发现》2018年第12期77-88,共12页Data Analysis and Knowledge Discovery

基  金:国家社会科学基金项目"大众分类中标签间语义关系挖掘研究"(项目编号:12BTQ038)的研究成果之一

摘  要:【目的】改进DBSCAN算法并验证其在社会化标注中的可行性及有效性。【方法】结合社会化标注的特点,分析标签被用来标注资源的频次及标签的总出现次数,挖掘标签与资源间的联系来改进DBSCAN聚类算法,以改进的算法为基础,实现标签聚类、用户聚类以及用户标签的拓展。【结果】采用豆瓣电影上的数据进行对比实验,改进的DBSCAN算法在应用于社会化标注时可以提高簇内对象间相关性与各簇间相关性的比值,聚类效果得到改进。【局限】在选择构建向量的数据时存在一定局限性,样本数据只能从较笼统的层面表示用户及资源特征,未对其进行深入挖掘。【结论】本文通过分析社会化标注的特点来改进DBSCAN算法,提高算法的效果,并为其改进提供新的思路。[Objective] This paper tries to improve the DBSCAN algorithm and verify its feasibility and effectiveness in social tagging. [Methods] First, we analyzed the frequency of social tags for resources and their total appearances. Then, we examined the relationship between tags and resources to improve the DBSCAN clustering algorithm. Finally, we applied the new algorithm to cluster tags, and users. [Results] We ran our experiment with data from Douban Movies. The modified DBSCAN algorithm improved the inter-object and inter-cluster correlations of social taggings. [Limitations] The sample datasets need more in-depth mining. [Conclusions] The improved DBSCAN algorithm could effectively cluster social tags.

关 键 词:DBSCAN 标签聚类 用户聚类 标签拓展 

分 类 号:G202[文化科学—传播学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象