检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张岩 李云章[2] Yan ZHANG;Yun Zhang LI(School of Malhematics and Information Science,North Minzu University, Yinchuan 750021,P.R.China;College of Applied Sciences,Beijing University of Technology, Beijing 100124,P.R.China)
机构地区:[1]北方民族大学数学与信息科学学院,银川750021 [2]北京工业大学应用数理学院,北京100124
出 处:《数学学报(中文版)》2019年第1期1-12,共12页Acta Mathematica Sinica:Chinese Series
基 金:国家自然科学基金资助课题(11501010;11271037);宁夏高等学校科学研究项目(NGY2018-163)
摘 要:p-进制MRA与GMRA是构造L^2(R_+)中小波框架的重要工具. L^2(R+)中嵌套子空间序列交集为{0},并集为L^2(R_+)是其构成p-进制MRA与GMRA的基本要求.本文研究单个生成元Walsh p-进制平移不变子空间伸缩的交与并,证明了:对任意单个生成元Walsh p-进制平移不变子空间,其p-进制伸缩的交是{0};若生成元分为Walsh p-细分函数,则其p-进制伸缩的并是L^2(R_+)中一个Walshp-进制约化子空间.特别地,其伸缩构成L^2(R_+)中p-进制GMRA当且仅当∪_(j∈z)p^j supp(■φ)=R+,其中■为定义在L^2(R_+)上的Walsh p-进制傅里叶变换.值得注意的是:形式上,我们的结果类似于通常L^2(R)的情形,然而其证明不是平凡的.这是因为定义在R_+上的p-进制加法"⊕"不同于定义在R上的通常加法"+".p-adic MRA and GMRA are important tools for constructing wavelet frames in L^2(R+). That a nested subspace sequence in L^2(R+) has trivial intersection and L^2(R+) union is a fundamental requirement for it to form a p-adic MRA and GMRA. This paper addresses the intersection and union of p-adic dilates of a singly generated p-adic shift-invariant subspace. We prove that, for a singly generated p-adic shift-invariant subspace, the intersection of its p-adic dilates is {0}, and the union of its p-adic dilates is a Walsh p-adic reducing subspace of L^2(R+) if the generator φ is Walsh p-adic refinable in addition. In particular, the dilates form a p-adic GMRA for L^2(R+) if and only if ∪j∈zpj supp(■.φ)=R+,where ■ is the Walsh p-adic Fourier transform on L^2(R+). It is worth noticing that our results are similar to the case of usual L^2(R),while their proofs are nontrivial. It is because the p-adic addition ⊕ on R+ is different from the usual addition + on R.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.134.118.113