检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈海昕[1] 邓凯文[1] 李润泽[1] CHEN Haixin;DENG Kaiwen;LI Runze(School of Aerospace,Tsinghua University,Beijing 100084,China)
出 处:《航空学报》2019年第1期47-63,共17页Acta Aeronautica et Astronautica Sinica
基 金:清华大学自主科研计划(205Z22003)~~
摘 要:近年来优化设计在气动设计中发挥了越来越多的作用,但实用性和效率是制约其发挥作用的两大障碍。在大型客机超临界机翼设计中,通过"人在回路"(依靠人的经验在优化进行过程中实施必要干预)等努力,取得了较好的效果,机器学习技术逐步得到发展。提出了利用机器学习技术模拟人在优化过程中的合理行为和作用机制,以深层次利用信息和知识,改善优化的实用性和效率。梳理了机器学习技术在气动优化中应用的发展脉络,并结合工作实践介绍了机器学习在优化设计中的典型应用。进一步探讨了深度学习在气动优化中的可能应用方式。While design optimization has been widely used in the aerodynamic design in the last decades,its incapability to efficiently obtain applicable solutions has seriously limited its utilization potential.The proposal and utilization of so-called"man-in-loop"methodology(to use expert’s experience to interfere the optimization process)in supercritical wing design of commercial airliners has shown impressive performance improvement.Regarding the rapid development of machine learning technology in recent decades and to improve both the efficiency and applicability of the current aerodynamic optimization methods,this article proposes to leverage machine learning technology to imitate and substitute experts’ rational interference inside the optimization loop to automatically further utilize essential information generated during optimization.For such purposes,this article reviews the history of the development and utilization of machine learning technology related to aerodynamic optimization and presents several typical cases based on authors’ engineering practices.Furthermore,this article discusses possible utilization forms of deep learning technology in aerodynamic optimization.
关 键 词:气动优化 机器学习 空气动力学设计 计算流体力学(CFD) 深度学习
分 类 号:V211.3[航空宇航科学与技术—航空宇航推进理论与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.21.248.226