Dimension Results for Space-anisotropic Gaussian Random Fields  被引量:1

Dimension Results for Space-anisotropic Gaussian Random Fields

在线阅读下载全文

作  者:Wen Qing NI Zhen Long CHEN Wei Gang WANG 

机构地区:[1]School of Statistics and Mathematics, Zhejiang Gongshang University [2]School of Science, Jimei University

出  处:《Acta Mathematica Sinica,English Series》2019年第3期391-406,共16页数学学报(英文版)

基  金:Supported by the Humanities and Social Sciences Research Project of Ministry of Education(Grant No.18YJA910001);the National Natural Science Foundation of China(Grant No.11371321);the first author is also supported by the Education and Scientific Research Foundation for Young and Middle-aged teachers of Fujian Province(Grant No.B17154)

摘  要:Let X = {X(t) ∈ R^d, t ∈ R^N} be a centered space-anisotropic Gaussian random field whose components satisfy some mild conditions. By introducing a new anisotropic metric in R^d, we obtain the Hausdorff and packing dimension in the new metric for the image of X. Moreover, the Hausdorff dimension in the new metric for the image of X has a uniform version.Let X = {X(t) ∈ R^d, t ∈ R^N} be a centered space-anisotropic Gaussian random field whose components satisfy some mild conditions. By introducing a new anisotropic metric in R^d, we obtain the Hausdorff and packing dimension in the new metric for the image of X. Moreover, the Hausdorff dimension in the new metric for the image of X has a uniform version.

关 键 词:HAUSDORFF DIMENSION PACKING DIMENSION GAUSSIAN random field UNIFORM DIMENSION 

分 类 号:O1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象