检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵毅强 Zhao Yiqiang(Beijing Moehen Arehiteets & Engineers,Beijing 100031,China)
出 处:《建筑结构》2019年第2期70-73,共4页Building Structure
摘 要:提出均载弹性矩形薄板最大正弯矩及负弯矩最大影响长度的简捷算法,即缩小网片逼近法和缩小区间逼近零值点坐标法,阐述了上述两种方法的计算原理。采用上述两种方法对两个算例进行了计算,并将计算结果与《建筑结构静力计算手册》的数据进行了对比。结果表明,上述两种方法计算速度快、精度好,可在EXCEL上用VBA组织运算;对于三边连续一长边简支板的Y向最大正弯矩Mymax以及三边简支一长边连续板的Y向最大正弯矩Mymax,当长边不断延长时,其值并不在长连续边中点对称轴上而在对称轴两侧某个对称位置上。A simple and direct solution for calculating maximum positive bending moment and maximum influence length of negative bending momen of elastic rectangle slabs under uniform distributed loads was proposed,i.e. the method of reducing mesh to approximate maximum value and the method of narrowing interval to approximate zero point large coordinate. The calculating principles of the above two methods were expounded. Two examples were calculated by the above two methods,and the results were compared with those of the Manual of static computation of building structures. The results show that the above two methods have quick calculation speed and good precision,and can be calculated by VBA on EXCEL. For Y-direction maximum positive bending moment Mymaxof a slab with three continuously-supported edges and one simply-supported long edge and Y-direction maximum positive bending moment Mymaxof a slab with one continuously-supported long edges and three simply-supported edges,these values are not on the symmetrical axis of the middle point of the continuous side,but at a symmetrical position on both sides of the symmetrical axis when the long edge is continuously extended.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.14.251.87