基于时频特征核熵成分分析的局部放电模式识别方法  被引量:11

Partial Discharge Pattern Recognition Method Based on Kernel Entropy Component Analysis of Time-frequency Features

在线阅读下载全文

作  者:李思同 庄强 金琳 卢兴旺 匡荣 赵静 LI Sitong;ZHUANG Qiang;JIN Lin;LU Xingwang;KUANG Rong;ZHAO Jing(Rizhao Power Supply Company,State Grid Shandong Electric Power Company,Shandong Rizhao 276800,China;Department of Electrical Engineering,North China Electric Power University,Hebei Baoding 071000,China)

机构地区:[1]国网山东省电力公司日照供电公司,山东日照276800 [2]华北电力大学电力工程系,河北保定071000

出  处:《高压电器》2018年第6期125-131,共7页High Voltage Apparatus

基  金:国家电网公司科技项目资助(GY71-14-048)~~

摘  要:为实现电气设备局部放电模式的准确识别,提出了一种基于时频特征核熵成分分析的局部放电模式识别方法。首先采用S变换理论对局部放电脉冲信号进行时频特征分析,针对S变换分析结果维数庞大但冗余信息较多而不便于模式识别的缺点,基于核熵成分分析方法对S变换结果进行压缩降维处理,得到了局部放电模式识别时频特征向量,同时结合随机森林分类器实现了局部放电类型的准确识别。搭建了尖端放电、沿面放电、气泡放电、悬浮放电等典型变压器绝缘缺陷模型并采集了局部放电信号,分别采用文中方法、PCA方法及KPCA方法进行了局放模式识别实验。实验结果表明,相比PCA方法及KPCA方法,文中方法局放模式识别结果准确率较高且耗时较短。To realize accurate pattern recognition of partial discharge in electrical equipment,a partial discharge pattern recognition method based on the kernel entropy component analysis of time-frequency feature was proposed. In this method,the time-frequency analysis of partial discharge pulse signal was carried out using the S-transform theory. Considering difficult pattern recognition of the S-transform due to a large number of dimensions of analysis results and too much redundant information, the kernel entropy component analysis(KECA) was adopted to compress the S-transform results. The time-frequency feature vector was obtained to recognize partial discharge type accurately by means of the random forest classifier. Furthermore,four typical transformer insulation defect models,which can produce point discharge,surface discharge,bubble discharge and suspended discharge,were set up in the laboratory,and the partial discharge signals were collected. Partial discharge pattern recognition experiments were conducted with the proposed method,PCA method and KPCA method, respectively, and the results showed that the proposed method obtained higher pattern recognition accuracy with shorter time.

关 键 词:局部放电 时频特征 S变换 核熵成分分析 模式识别 

分 类 号:TM855[电气工程—高电压与绝缘技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象