检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蒋红妍[1] 白雨晴[1] JIANG Hong-yan;BAI Yu-qing(School of Civil Engineering,Xi'an University of Architecture and Technology,Xi'an 710055,China)
机构地区:[1]西安建筑科技大学土木工程学院,陕西西安710055
出 处:《工程管理学报》2019年第1期29-33,共5页Journal of Engineering Management
基 金:国家自然科学基金面上项目(51408459)
摘 要:针对高层住宅工程造价管理的难点及传统造价估算方法存在的不足,采用灰关联分析与粒子群优化的BP神经网络相结合的方法,以高层住宅工程特征指标为网络的输入向量,达到快速、准确地估算高层住宅工程造价的目标。借助文献回顾法与灰关联分析法系统地确定工程特征指标体系并作为神经网络的输入向量;引入PSO算法优化BP网络的权值及阈值,解决网络收敛速度慢、易陷入局部极小值等缺点。并通过实例验证构建的模型,提高了前期决策阶段造价估算的精确度,实现了快速估算。In view of the difficulty in cost management of high-rise residential buildings and the deficiency of the traditional cost estimation method,this paper proposes a method combining gray correlation analysis and BP neural network of particle swarm optimization.The characteristic indexes of high-rise residential buildings are used as input vector of the neural network in order to estimate the cost of high-rise residential buildings rapidly and accurately.Firstly,the literature review and the grey relational analysis method are used to systematically establish the characteristic index system,which is subsequently used as the input vector of the neural network.Secondly,the PSO algorithm optimized BP network weights and thresholds are introduced to solve the disadvantages of slow convergence and local minima in network.Finally,the model is verified by an example to improve the accuracy of the cost estimation in the early stage of decision-making to achieve a quick estimation.
关 键 词:高层住宅 造价估算 灰关联分析法 PSO-BP神经网络
分 类 号:TU723.3[建筑科学—建筑技术科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30