基于模拟的企业过程模型自动优化技术研究  被引量:9

Research on a Simulation-Based Auto-Optimized Technique in Enterprise Process Model

在线阅读下载全文

作  者:谭文安[1] 周伯生[2] 王 强[2] 李明树[3] 

机构地区:[1]浙江师范大学计算机科学与工程学院,浙江金华321004 [2]北京航空航天大学计算机科学与工程系,北京100083 [3]中国科学院

出  处:《软件学报》2002年第4期706-712,共7页Journal of Software

基  金:国家自然科学基金资助项目(69803003);浙江省教育厅基金资助项目(20010083)

摘  要:企业过程模型参数自动优化是一个多参数多目标的系统优化问题.采用线性加权法将其转换成多参数单目标问题的求解,提出基于计算机模拟的企业过程模型参数的自动寻优方法.它将传统的共轭梯度法FR(fletcher reeves)和禁忌搜索算法TS(tabu search)结合起来,采用FR法进行局部寻优,由TS法实现从当前局部最优点向全域范围内的更优区域转移,循环往复达到求出全域范围最优点的目的.改进了FR法与TS法,克服了各自的缺陷,并提出禁忌区域表的概念,从而加速寻优过程.它适用于任意多维曲面的多极值问题最优求解,对企业进行BPR(business process reengineering)和实施ERP(enterprise resource planning)管理有较大的指导意义.The automatic optimization of enterprise process model parameters is an optimization problem of the objectives and parameters system. This problem can be changed into the issue solving only one objective and parameters the system optimization with by linearity weighting method. Based on it, an automatic optimization technique in enterprise process modeling based on computer simulation is discussed in this paper, which combines FR (fletcher-reeves) method and TS (tabu-search) algorithm. The technique uses FR method to obtain the local optimization solutions, and uses TS algorithm to discover the global optimum in the sense of probability. The concept of tabu-area table is firstly proposed, and the tabu-list is improved from the two dimensions array to one dimension array, which uses to record the trace of optimize of the process model. FR method is improved by introducing search direction determining while near to the local optimization solutions so as to solve the peak and zigzag curve problem. The new technique can be generalized for model parameters optimization in the arbitrary curves, and be instructive for enterprise to implement BPR (business process reengineering) and ERP (enterprise resource planning) management.

关 键 词:最优化方法 禁忌搜索算法 企业过程模型 自动优化 计算机模拟 ERP 

分 类 号:F270.7[经济管理—企业管理] O224[经济管理—国民经济]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象