注塑过程熔体充填长度的动态神经网络软测量模型  被引量:2

Modeling of Melt-flow-length During Injection Filling Stage Based on Dynamic Neural Network Soft-sensor

在线阅读下载全文

作  者:陈曦[1] 钱积新[1] 高福荣[2] 

机构地区:[1]浙江大学控制系系统工程研究所,浙江杭州310027 [2]香港科技大学化工系

出  处:《化工自动化及仪表》2002年第2期43-46,共4页Control and Instruments in Chemical Industry

摘  要:提出用喷嘴压力、注射速度和螺杆位移等在线可测二次变量来预测充填长度的方法 ,并建立了基于动态神经网络的充填长度模型。验证结果表明 。Quality control is of great importance of the injection molding study.As a key variable to the injection molded part quality,melt front rate in mold cavity is commonly believed that it should be control at a constant value during the tilling stage as to improve the part uniformity.Modeling of melt flow length,therefore,is of great importance for the eventual implementation of the quality control.A model of melt flow length using the other online measurable variables based on dynamic neural network is founded in the paper.Verification results using molds with different shapes prove that the neural network model can accurately predict the melt folw length.

关 键 词:塑料加工 注射过程 熔体充填长度 动态神经网络 软测量模型 

分 类 号:TQ320.662[化学工程—合成树脂塑料工业]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象