检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《控制与决策》2002年第3期292-296,共5页Control and Decision
摘 要:递阶强化学习是解决状态空间庞大的复杂系统智能体决策的有效方法。具有离散动态特性的AGV调度系统需要实时动态的调度方法 ,而具有 Max Q递阶强化学习能力的多智能体通过高效的强化学习方法和协作 ,可以实现 AGV的实时调度。Hierarchical reinforcement learning is an effective method of solving decision problems for complex systems with enormous number of states. AGV dispatching system needs dynamic dispatching rules because of its discrete and dynamic properties. Multiagent with the capacity of Max Q hierarchical reinforcement learning is implemented in real time AGV dispatching by high performance learning and cooperation. The simulation testifies the efficiency of this method.
关 键 词:递阶强化学习 多智能体 AGV调度系统 机器学习
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.119.13.56