基于小波神经网络的电力系统振荡和故障识别  被引量:19

WAVELET NEURAL NETWORKS BASED RECOGNITION OF SWING AND FAULT IN POWER SYSTEM

在线阅读下载全文

作  者:毛鹏[1] 张兆宁[2] 林湘宁 孙雅明[3] 

机构地区:[1]烟台东方电子信息产业股份有限公司保护所,山东省烟台市264001 [2]中国民航学院空管系,天津市300300 [3]天津大学电力系,天津市300072

出  处:《电力系统自动化》2002年第11期9-13,44,共6页Automation of Electric Power Systems

摘  要:目前距离保护中的振荡闭锁元件都不同程度地导致振荡中故障的延时及无选择切除 ,基于此 ,文中综合小波变换以及神经网络的突出优点 ,构建了一种新型的小波神经网络模型 ,并给出了其相应的算法 ,以此小波神经网络实现了高压输电线路距离保护中基于暂态信号的系统振荡闭锁元件。理论分析及大量 EMTP仿真实验表明 :充分训练学习后的小波网络能够正确、快速地识别系统振荡和各种故障情况 ,即使是系统振荡时最不利情况下的线路轻微故障 ,亦能获得比较满意的结果 。All of the existing power swing blocking elements would cause, at different extent, delayed and blind elimination during the power swing. This paper presents a new type of wavelet neural networks (WNN) model with the integration of the outstanding characteristics of Wavelet transform (WT) and Neural Networks (NN), and its corresponding algorithm. Based on the WNN, a new principle for power swing block using transient signal could be designed in the distance protection devices. Theoretical analysis and lots of EMTP simulation results show that WNN after enough learning can quickly and correctly recognize the fault during power swing. Even under the unfavorable conditions, satisfactory results can be achieved. And the method has many advantages such as fast computation and response, high reliability etc.

关 键 词:小波 神经网络 电力系统 振荡 故障识别 

分 类 号:TM711[电气工程—电力系统及自动化] TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象