检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科技大学量子通讯与量子计算实验室和数学系,合肥230026 [2]中国科技大学数学系,合肥230026
出 处:《数学年刊(A辑)》2002年第2期165-174,共10页Chinese Annals of Mathematics
基 金:国家自然科学基金(No.19971080)资助的项目
摘 要:设是一个仿射箭图,它的极小虚单根为n.设k是一个有限域,记A=k为k上关于箭图的路代数,而记C(A)为关于A的合成代数.由C.Ringel和J.Green的工作,C(A)揭示了A的表示与量子群有密切的关系.文[11]证明了对应于A的不可分解表示可以分成预投射,正则,和预内射三个部分,C(A)具有一个三角分解.[11]中的证明需要假设维数向量为n的拟单模存在,而对于|k|=2,是n型和m型(m=6,7,8)的情形,此假设不满足,本文的目的是给出一个简化的,而且不需要前面所提假设的证明.由此,得到一个与域k无关的C(A)的三角分解.Let A = k A be the path algebra of an affine quiver A over a finite field k, with minimal imaginary root n, and C(A) the corresponding composition algebra. By the work of C. Ringel and J. Green, C(A) relates the representation theory of A with the. quantum groups. It has been proved in [11] that C(A) has a triangular decomposition corresponding to the division of the indecomposables into the preprojectives, the regulars, and the preinjectives. However, the proof there needs the assumption that there exists a homogeneous quasi-simple with dimension vector n, and hence it fails for |k| = 2 and of type Dn and Em (m = 6,7,8). The aim of this paper is to give a new proof of this result in which the assumption can be dropped. In this way, a triangular decomposition of C(A) independent of k are obtained.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3