燃煤锅炉低氮氧化物燃烧特性的神经网络预报  被引量:39

Predicting Low NO_x Combustion Property of a Coal-Fired Boiler

在线阅读下载全文

作  者:周昊[1] 茅建波[1] 池作和[1] 蒋啸[1] 王正华[1] 岑可法[1] 

机构地区:[1]浙江大学热能工程研究所能源清洁利用和环境工程教育部重点实验室,杭州310027

出  处:《环境科学》2002年第2期18-22,共5页Environmental Science

基  金:国家重点基础研究发展规划项目 (G19990 2 2 2 0 4)

摘  要:大型燃煤电站锅炉的低NOx 燃烧技术日益受到关注 ,但NOx 的排放特性复杂 ,受煤种、锅炉设计结构和操作参数等多种因素影响 .在对某台 60 0MW四角切圆燃煤电站锅炉的NOx 排放特性和飞灰含碳量特性进行多工况热态测试的基础上 ,应用人工神经网络的非线性动力学特性及自学习特性 ,建立了大型四角切圆燃烧锅炉NOx 排放特性和燃烧经济性的神经网络模型 ,并对此模型进行了校验 .结果表明 ,该模型能根据燃煤特性及各种操作参数准确预报锅炉在不同工况下的NOx 排放和飞灰含碳量特性 。More attention was paid to the low NO x combustion property of the high capacity tangential firing boiler, but the NO x emission and unburned carbon content in fly ash of coal burned boiler were complicated, they were affected by many factors, such as coal character, boiler's load, air distribution, boiler style, burner style, furnace temperature, excess air ratio, pulverized coal fineness and the uniformity of the air and coal distribution, etc. In this paper, the NO x emission property and unburned carbon content in fly ash of a 600MW utility tangentially firing coal burned boiler was experimentally investigated, and taking advantage of the nonlinear dynamics characteristics and self learning characteristics of artificial neural network, an artificial neural network model on low NO x combustion property of the high capacity boiler was developed and verified. The results illustrated that such a model can predicate the NO x emission concentration and unburned carbon content under various operating conditions, if combined with the optimization algorithm, the operator can find the best operation condition of the low NO x combustion.

关 键 词:锅炉 NOx 飞灰含碳量 人工神经网络 

分 类 号:X701.7[环境科学与工程—环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象