检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周定伟[1]
机构地区:[1]中国科学院工程热物理研究所,北京100080
出 处:《化工学报》2002年第5期538-541,共4页CIESC Journal
基 金:国家重点基础研究发展规划项目 (No G2 0 0 0 0 2 63 0 5 )
摘 要:The effects of several factors on boiling heat transfer around horizontal circular copper tube in an acoustic cavitation field were investigated experimentally, and the inherent mechanism of the influences of acoustic cavitation parameters, fluid subcooling and nanometer particles were discussed in terms of local wall temperature. The experimental results show that the influence of cavitation bubbles reduced with the decreasing of cavitation distance, fluid subcooling and nanometer particle concentration, yet enhanced with the increasing of cavitation intensity. Boiling heat transfer could be remarkably intensified by acoustic cavitation due to not only sufficient provision of nucleated vapor embryos to the tube surface, but also increasing boiling area and consequently effective dissipation of heat. The addition of nanometer particles in liquid could result in roughness variation of heater surface and active reduction of cavitation bubbles.The effects of several factors on boiling heat transfer around horizontal circular copper tube in an acoustic cavitation field were investigated experimentally, and the inherent mechanism of the influences of acoustic cavitation parameters, fluid subcooling and nanometer particles were discussed in terms of local wall temperature. The experimental results show that the influence of cavitation bubbles reduced with the decreasing of cavitation distance, fluid subcooling and nanometer particle concentration, yet enhanced with the increasing of cavitation intensity. Boiling heat transfer could be remarkably intensified by acoustic cavitation due to not only sufficient provision of nucleated vapor embryos to the tube surface, but also increasing boiling area and consequently effective dissipation of heat. The addition of nanometer particles in liquid could result in roughness variation of heater surface and active reduction of cavitation bubbles.
分 类 号:TK124[动力工程及工程热物理—工程热物理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28