检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京工业大学信号与信息处理研究室,北京100022
出 处:《模式识别与人工智能》2002年第2期178-181,共4页Pattern Recognition and Artificial Intelligence
基 金:国家自然科学基金(No.69971004)
摘 要:两类支撑向量机(SVM)用于模式识别具有最优的推广能力.对于常见的多类识别问题,需要构造多类SVM.本文提出一种新的基于决策树的构造方法,由此构成的多类SVM (DTSVM),与现有的方法相比,具有更快的计算速度,适用于需处理样本数较多的识别问题.Support Vector Machines (SVM) can achieve good performance when applied to small-sample pattern recognition problems. The basic support vector machine is for two-class problem. In this paper, the principle of SVM is introduced and a new support vector machine, called decision tree based SVM (DTSVM), is proposed to solve multi-class recognition problems. In the decision tree, each non-leaf node represents a SVM classifier. The decision tree is constructed by hierarchical clustering or by a priori knowledge. DTSVM is proved to be the fastest method in our experimental evaluation. It is applicable to multi-class recognition problems with a large amount of samples.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222