奇点分析单元法在断裂问题中的应用  

APPLICATION OF SINGULAR POINT ANALYTICAL ELEMENT METHOD TO CRACK PROBLEM

在线阅读下载全文

作  者:孙雁[1] 韩震[1] 刘正兴[1] 

机构地区:[1]上海交通大学工程力学系,上海200030

出  处:《机械强度》2002年第2期262-265,共4页Journal of Mechanical Strength

基  金:上海市青年科技启明星计划 (0 0QA1 4 0 1 3);上海市高校青年科学基金资助项目 (99QA2 30 1 0 5)

摘  要:将裂纹应力计算问题导向哈密顿体系 ,利用分离变量法及本征函数向量展开等方法 ,推导出裂纹尖端的应力奇性解的计算公式。结合变分原理 ,提出一种解决应力奇性计算的奇点分析单元。将此分析单元与有限元法相结合 ,可以进行某些断裂力学或复合材料等应力奇性问题的计算及分析。数值计算结果表明 ,该方法具有精度高 ,使用十分方便、灵活等优点 。The governing equations of stress calculation in singularity point domain are transformed into Hamiltonian form via substitution of variables and the variational principle The method of separation of variables and the method of eigenfunction expansion are applied to derive the equations for calculation of stress singularity at the crack tip A new singularity point analytical element, which is developed for the problem of stress singularity, is installed into the FEM program system Through this element, it is also possible to deal with some fracture mechanics problems and stress singularity problems in composites The proposed method obtained through the corresponding computer program,is supported by the numerical results, which demonstrates the advantage of the theory of Hamiltonian system and the symplectic mathematics

关 键 词:哈密顿体系 奇点分析元 裂纹尖端 应力奇性 有限元 断裂力学 

分 类 号:O346.1[理学—固体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象