检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刁力力[1,2] 胡可云[1,2] 陆玉昌[1,2] 石纯一[1,2]
机构地区:[1]清华大学智能技术与系统国家重点实验室,北京100084 [2]清华大学计算机科学与技术系,北京100084
出 处:《软件学报》2002年第8期1361-1367,共7页Journal of Software
基 金:~~国家自然科学基金;~~国家重点基础研究发展规划973项目
摘 要:为提高文本分类的精度,Schapire和Singer尝试了一个用Boosting来组合仅有一个划分的简单决策树(Stumps)的方法.其基学习器的划分是由某个特定词项是否在待分类文档中出现决定的.这样的基学习器明显太弱,造成最后组合成的Boosting分类器精度不够理想,而且需要的迭代次数很大,因而效率很低.针对这个问题,提出由文档中所有词项来决定基学习器划分以增强基学习器分类能力的方法.它把以VSM表示的文档与类代表向量之间的相似度和某特定阈值的大小关系作为基学习器划分的标准.同时,为提高算法的收敛速度,在类代表向量的计算过程中动态引入Boosting分配给各学习样本的权重.实验结果表明,这种方法提高了用Boosting组合Stump分类器进行文本分类的性能(精度和效率),而且问题规模越大,效果越明显.Stumps, classification trees with only one split at the root node, have been shown by Schapire and Singer to be an effective method for text categorization when embedded in a boosting algorithm as its base classifiers. In the experiments, the splitting point (the partition) of each stump is decided by whether a certain term appears or not in a text document, which is too weak to obtain satisfied accuracy even after they are combined by boosting, and therefore the iteration times needed by boosting is sharply increased as an indicator of low efficiency. To improve these base classifiers, an idea is proposed in this paper to decide the splitting point of each stump by all the terms of a text document. Specifically, it employs the numerical relationship between the similarities of the VSM-vector of text document and the representational VSM-vector of each class as the partition criteria of the base classifiers. Meanwhile, to further facilitate its convergence, the boosting weights assigned to sample documents are introduced to the computation of representational VSM-vectors for possible classes dynamically. Experimental results show that the algorithm is both more efficient for training and more effective than its predecessor for fulfilling text categorization tasks. This trend seems more conspicuous along with the increasement of problem scale.
关 键 词:BOOSTING方法 文本分类 机器学习 Stumps分类器
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.21.55.178