基于逐步回归—LMBP算法的大通站旬径流与月径流预报  被引量:6

Ten-days and Monthly Runoff Forecasting in Datong Station Based on Stepwise Regression and LMBP Algorithm

在线阅读下载全文

作  者:张素琼[1] 张艳军[1] 刘佳明[1] 袁迪[1] 邹霞[1] 宋星原[1] 

机构地区:[1]武汉大学水利水电学院,湖北武汉430072

出  处:《水电能源科学》2014年第6期13-15,4,共4页Water Resources and Power

基  金:国家自然科学基金项目(51079099;51279140;51379149);国家自然科学基金青年科学基金项目(51209162)

摘  要:为提高长江干流大通站旬径流与月径流预报精度,选取大通站1980~2012年各旬、各月径流观测资料及国家气候中心同期发布的72项大气环流资料,采用逐步回归法—LMBP算法对大通站的旬平均径流序列进行模拟和预报,并与月尺度径流序列的计算结果做了对比。结果表明,预测值与原序列的趋势基本相同,旬尺度的径流预报精度高于月尺度的预报精度,表明时间尺度的选择影响径流预报的精度。In order to investigate the precision of ten-days and monthly runoff forecasting at Datong Station in the main stream of the Yangtse River, the runoff data of Datong Station and 72 circulation indices issued by the National Climate Center from 1980 to 2012 were selected to simulate and forecast ten-days average runoff series by using stepwise regression and LMBP algorithm. Compared with the monthly runoff series, the results show that the trend of forecasting is basically consist with the original runoff series; ten-days runoff forecasting precision is higher than that of monthly runoff forecasting, which demonstrates that the selection of time scale has impact on the runoff forecasting precision.

关 键 词:径流预报 精度 逐步回归法 LMBP算法 大通水文站 

分 类 号:P338.2[天文地球—水文科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象