检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张素琼[1] 张艳军[1] 刘佳明[1] 袁迪[1] 邹霞[1] 宋星原[1]
出 处:《水电能源科学》2014年第6期13-15,4,共4页Water Resources and Power
基 金:国家自然科学基金项目(51079099;51279140;51379149);国家自然科学基金青年科学基金项目(51209162)
摘 要:为提高长江干流大通站旬径流与月径流预报精度,选取大通站1980~2012年各旬、各月径流观测资料及国家气候中心同期发布的72项大气环流资料,采用逐步回归法—LMBP算法对大通站的旬平均径流序列进行模拟和预报,并与月尺度径流序列的计算结果做了对比。结果表明,预测值与原序列的趋势基本相同,旬尺度的径流预报精度高于月尺度的预报精度,表明时间尺度的选择影响径流预报的精度。In order to investigate the precision of ten-days and monthly runoff forecasting at Datong Station in the main stream of the Yangtse River, the runoff data of Datong Station and 72 circulation indices issued by the National Climate Center from 1980 to 2012 were selected to simulate and forecast ten-days average runoff series by using stepwise regression and LMBP algorithm. Compared with the monthly runoff series, the results show that the trend of forecasting is basically consist with the original runoff series; ten-days runoff forecasting precision is higher than that of monthly runoff forecasting, which demonstrates that the selection of time scale has impact on the runoff forecasting precision.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15