一种改进的基于潜在语义索引的文本聚类算法  被引量:3

An Improved Text Clustering Algorithm Based on Latent Semantic Indexing

在线阅读下载全文

作  者:侯泽民[1] 巨筱[1] 

机构地区:[1]郑州科技学院信息工程学院,河南郑州450064

出  处:《计算机与现代化》2014年第7期24-27,共4页Computer and Modernization

基  金:郑州市科技局自然科学基金资助项目(201210439)

摘  要:提出一种改进的基于潜在语义索引的文本聚类算法。算法引入潜在语义索引理论,改进传统的SOM算法。用潜在语义索引理论表示文本特征向量,挖掘文本中词与词之间隐藏的语义结构关系,从而消除词语之间的相关性,实现特征向量的降维。改进传统的SOM算法的局限性,准确给出聚类类别数目的值。实验结果表明,本算法的聚类效果更好,聚类时间更少。This paper presents an improved text clustering algorithm based on latent semantic indexing .This algorithm introduces the theory of latent semantic index , improves the traditional SOM algorithm .By using the latent semantic indexing text feature vector representation theory , we mine the semantic structure relationships hidden among the words in text , thereby eliminating the correlation among words , to reduce the feature vector dimension .The limitations of the traditional SOM algorithm are improved to accurately give the number of clustering classes .Experimental results show that the clustering effect of this algorithm is better , and the clustering time is less .

关 键 词:文本聚类 潜在语义索引 自组织映射 

分 类 号:TP182[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象