检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]常州大学信息科学与工程学院,江苏常州213164 [2]常州市生物医学信息技术重点实验室,江苏常州213164
出 处:《南京师范大学学报(工程技术版)》2014年第2期55-60,共6页Journal of Nanjing Normal University(Engineering and Technology Edition)
基 金:国家自然科学基金(61201096);常州市科技项目(CE20135060;CM20123006;CJ20130026);青蓝工程资助
摘 要:脑-机接口技术领域的关键问题是脑电信号的分类识别研究.本文针对脑电信号的分类问题,基于EGI-64导脑电采集系统得到7名被试者的左右手运动想象脑电数据,首先采用扩展Infomax-ICA方法对脑电数据进行去噪处理;然后利用共空间模式方法对C3/C42个电极的脑电信号进行特征提取;最后比较了Fisher线性判别分析法、贝叶斯方法、径向神经网络和BP神经网络几种算法的平均分类率.结果表明:神经网络分类方法得到的平均分类率要高于其他2种方法,而BP神经网络方法的平均分类率最高,可以达到95.36%,但另外3种方法的运行速度明显高于BP神经网络.该结果为实时BCI系统实施提供了一定依据.Classification of electroencephalogram(EEG)signal is an important issue in brain-computer interface(BCI). Based on the classification of the EEG signals,in this paper,we collect the left-right hand motor imagery EEG data of 7 subjects which are recorded by EGI-64 scalp electrodes placed according to the international 10/20 system. Firstly,the EEG data are denoised with extend Infomax-Independent Component Analysis ( ICA );Secondly, C3 and C4 electrodes features are extracted by using Common Spatial Pattern( CSP);Finally,the average classification rates of Fisher Linear Discriminant Analysis(FLDA),Bayesian,Radial Basis Function(RBF)neural network and BP neural network methods are compared. The classification results show that the average classification rate of neural network is higher than the other two methods,and that the average classification rate of BP neural network can be up to 95. 36%,but the other three methods of running velocity is obviously faster than the BP neural network. The results provide a basis for real-time BCI system implementation.
分 类 号:R318.04[医药卫生—生物医学工程] TP391.4[医药卫生—基础医学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33