检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:董云飞[1] 孙玉军[1] 王轶夫[2] 郭孝玉[3]
机构地区:[1]北京林业大学,北京100083 [2]中国科学院地理科学与资源研究所 [3]江西农业大学
出 处:《东北林业大学学报》2014年第7期154-156,165,共4页Journal of Northeast Forestry University
基 金:林业公益性行业科研专项(200904003-1);国家林业局重点项目(2012-07);林业科技成果国家级推广项目([2014]26)
摘 要:以福建省将乐县国有林场29块杉木人工林实测数据为例,运用BP神经网络建模技术建立树高预测模型。分别确定输入量和隐层节点数,再经训练和优选,得到的最优模型结构为2∶5∶1,决定系数为0.902 3,均方误差为1.7842。结合传统的两个标准树高曲线方程,利用检验数据分别对模型进行验证。结果表明:BP神经网络模型不管是拟合效果还是预测效果都明显优于传统方程,可以作为有效的树高预测技术。We used the data of 29 plots of Chinese fir located in national forest farm of Jiangle in Fujian Province to build height prediction model by BP neural network. First, the input variable and the hidden nodes were determined, then, by training and optimization, an optimum modal was developed, with a model structure of 2 : 5 : 1, a determinate coefficient of 0.902 3 and error of mean square of 1.784 2. And then, it was compared with two traditional generalized height-diameter equations, the validation datasets were used to test the models, respectively. The fitting effect and prediction effect of BP neural network model are better than those of traditional equations, and BP neural network model can be used as effective tree height prediction technology.
分 类 号:S791.27[农业科学—林木遗传育种]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28