检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中山大学数学与计算科学学院,广州510275
出 处:《嘉应学院学报》2014年第5期13-17,共5页Journal of Jiaying University
基 金:广东省科技计划项目(2010B031900044)
摘 要:通过分析传统的多层感知器和反向传播算法的不足,设计了一个全新的网络结构SC-MLP和提出了与之对应的全新的学习算法NBP,主要是实现权值的模和固定,这样可以加速训练的速度.在高维数据分类的实证分析中,以手写数字数据库为例,构建了一个深度神经网络,并对比各种训练算法.实验表明,NBP学习算法对于深度神经网络具有良好的学习效果,明显优于传统的反向传播算法,并且在精度上与深度学习算法相当,但是速度快.By analyzing the deficiencies of the traditional multilayer perceptrons and back - propagation algorithm, this paper designed a new network architecture SC - MLP and proposed the corresponding new learning algorithm NBP, mainly realizing the fixed norm of weights, so we can accelerate training speed. In the empirical analysis of high- dimensional data classification, for example handwritten digital databases, we construct a deep neural network and compare the various training algorithms. The results show that the NBP learning algorithm has good learning effect for learning neural network, which is faster but much better than the traditional back - propagation algorithm, and as good as the “deep learning” algorithms in the precision.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28