检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安理工大学西北水资源与环境生态教育部重点实验室,西安710048 [2]黄河水利委员会水文局,郑州450004 [3]河南省水利勘测设计研究有限公司,郑州450016
出 处:《水力发电学报》2014年第4期68-75,共8页Journal of Hydroelectric Engineering
基 金:水利部公益性行业科研专项(201001012)
摘 要:为达到黄河长治久安和流域经济社会可持续发展的目的,本文进行了黄河水沙调控体系的风险分析。对水沙调控系统运行中的不确定性和随机性可能导致的风险进行了风险识别;利用逐步回归模型计算了各因子与水沙调控目标的相关紧密程度,筛选出了主要风险因子;采用BP神经网络模型的方法,对水沙调控体系进行了风险估计;利用基于熵权的模糊综合评价模型对水沙调控体系主要河段的风险等级进行了计算,并补充完善风险评价指标体系,决策得出以古贤、小浪底水库为中心的调控方案中存在的风险属于低风险。结合黄河水沙现状,考虑风险效益等,提出了适合黄河水沙调控的风险应对措施:需要继续完善黄河水沙调控体系,加快建设古贤水库枢纽的工作,进一步做好黑山峡、碛口、东庄水库和南水北调西线一期工程的开发工作,为塑造更好的黄河水沙条件提供支持。For lasting peace and stability of the Yellow River and sustainable economic and social development in this watershed, it is important to know how much risk in water and sediment regulation of this river. This study identifies the risk of water and sediment control system caused by uncertainty and randomness factors, and calculates the degree of correlation of each factor with the objectives of this system using a stepwise regression model to filter out major risk factors. A BP neural network model was used for risk estimation of the system. We calculated the risk levels for the main reaches in the system using a comprehensive fuzzy evaluation model based on entropy weight, and made an improvement on the index system of risk evaluation. This procedure has been applied to evaluation of a scheme that takes the regulation of the Xuxian and Xiaolangdi reservoirs as a central measure, and it shows a low risk of this scheme. New risk management measures are suggested to improve the existing regulation system of the Yellow River in consideration of the existing conditions and risk-benefit factors, etc., including efforts to continually improve the existing water and sediment control system, speeding up the construction work of the Guxian, and further development of Heishanxia, Qikou, Dongzhuang and the south-to-north water diversion project.
关 键 词:水利管理 风险分析 BP神经网络 熵权评价模型 水沙调控
分 类 号:TV213.9[水利工程—水文学及水资源]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7