用户自适应的社会标签推荐模型  被引量:1

User Adaptive Social Tag Recommendation Model

在线阅读下载全文

作  者:卢露[1] 赵靖[2] 魏登月[3] 

机构地区:[1]上海电力学院计算机科学与技术学院,上海200090 [2]安徽科技学院理学院,安徽凤阳233100 [3]武汉大学计算机学院,武汉430079

出  处:《计算机工程》2014年第7期165-169,共5页Computer Engineering

基  金:国家自然科学基金资助项目"用户自适应的社会标签生成和优化模型研究"(61272277);安徽省教育厅优秀青年基金资助重点项目"Web挖掘中的群智能算法应用研究"(2011SQRL117ZD)

摘  要:针对传统模型不能真实反映标签的生成过程以及无法加入用户角色等问题,提出一种新的用户-内容联合标注模型。该模型中标签的生成同时受用户兴趣和资源主题的影响,反映用户真实的标注过程,能够学习到包括用户的兴趣分布概率、资源的主题分布概率、词语的主题分布概率以及标签的主题分布概率等参数。实验结果表明,与CI-LD、ACorrLDA等模型相比,该推荐模型的正确率提高了10%。Aiming at the problem that tag generation process is not reasonable, or does not add user role and so on in this kind of model, a new generative model called user-content joint labeling model is presented. In the model, social tags are generated by user profile and resource topic together, which reflect the real label process of users. What's more is that this model can learn a lot of useful parameters: the topical distribution of each resource, the interest distribution of each user, the word distribution of each topic and the tag distribution of each topic. Experimental results show that the proposed model's accuracy raises by 10% compared with other two models proposed in previous research.

关 键 词:社会标注 标签 隐含主题模型 狄利克雷分配模型 用户·内容联合标注模型 GIBBS抽样 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象