检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王晋疆[1,2] 陈阳[1,2] 田庆国[1,2] 常天宇[1,2]
机构地区:[1]天津大学精密仪器与光电子工程学院,天津300072 [2]光电信息技术教育部重点实验室,天津300072
出 处:《计算机工程》2014年第7期174-178,共5页Computer Engineering
基 金:国家自然科学基金资助项目(61177002)
摘 要:针对传统特征点提取算法存在的对噪声敏感、人机交互效率不高等问题,提出一种基于点签名的散乱点云特征点检测方法。借助于k邻近方法,统计所有散乱点云的点签名,并给出相应的点签名直方图与色阶图。基于正态分布的规律设定曲率阈值,完成特征点云的初步筛选。在初步筛选的基础上,对候选特征点云在其主曲率方向上进行投影,完成特征点的进一步筛选。实验结果表明,该特征点检测方法适用于各种不同的点云数据,能够准确、有效地提取出特征点,且人机交互效率与抗噪性能均优于传统k邻近方法。The traditional method for feature point detection from 3D scattered point cloud is sensitive to the noise data and has a low efficiency of human-computer interaction. To deal with the problems, a method based on point signature is proposed. The point signature information of all the points is calculated depending on the k nearest neighbors, the related histogram and color-level chart are drawn. A threshold is built according to the Normal distribution to finish the preliminary screening. The candidate feature points are projected in the directions of principle curvatures to select the feature points again. Experimental results show that the proposed method is suitable for various kinds of points models, which can detect the feature points accurately and effectively, and the efficiency of human-computer interaction and noise immunity are better than the traditional methods.
关 键 词:散乱点云 特征点提取 点签名 色阶图 正态分布 方向投影
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.169