检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]广州中心气象台,广州510080 [2]广东广播电视大学计算机技术系,广州510091
出 处:《计算机工程与应用》2014年第14期148-151,167,共5页Computer Engineering and Applications
基 金:广东省气象局气象科技项目(No.2011B03;No.201007)
摘 要:天气受到多种因素综合影响,具有时变性和不确定性,单一模型难以获得较高的识别正确率,为此,提出一种改进K近邻和支持向量机相融合的天气识别模型(IKNN-SVM)。首先计算待识别样本与超平面间距离,然后将距离与预设阈值进行比较,如果大于阈值,则采用支持向量机对天气进行识别,否则利用K近邻算法对天气进行识别,并引入样本密度对K近邻算法进行改进,最后采用仿真实验对模型性能进行测试。仿真结果表明,相对于单一的KNN或SVM,IKNN-SVM提高了天气识别正确率,较好地克服单一模型存在的缺陷。The weather which is affected by many factors is changeable and uncertain, single model is difficult to obtain high identification rate, therefore, this paper proposes a weather identification model(IKNN-SVM)based on improved K nearest neighbor and support vector machine. Firstly, the distance between of the testing sample and a hyper plane is cal-culated, then the distance is compared with the threshold, if distance is greater than the threshold, then support vector machine is used to identify the weather, otherwise the K nearest neighbor algorithm is used to identify the weather, and the sample density is introduced to solve the defects of K nearest neighbor algorithm, finally the simulation experiment is car-ried out to test on the performance of model. The simulation results show that, compared with the single KNN or SVM, IKNN-SVM has improved weather identification correct rate and can overcome the defects of the single model.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222