检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《电子科技大学学报》2014年第4期612-617,共6页Journal of University of Electronic Science and Technology of China
摘 要:为了解决大规模非线性分类中局部学习的不平衡性问题,提出一种改进的局部支持向量机算法,在高维特征空间中聚类后,为每一个簇构造局部非线性支持向量机。为了克服簇内样本的分布不均衡问题,根据闭合超平面不规则边界的几何特点,经过梯度下降寻找稳定均衡向量,以此构造簇几何中心;再结合簇密度中心共同约束类心形成双重加权中心。然后通过求解加权最小闭球问题实现对大规模样本向量的分类。对照实验显示,除了个别数据集以外,改进的算法在训练时间、测试时间以及测试精度等方面都比另外两种分类算法表现更佳。An improved algorithm for localized support vector machine is proposed to resolve the imbalance of local learning problem in nonlinear classifications on large data sets. The algorithm uses the supervised clustering algorithm for clustering in a feature space of high dimension and then constructs local nonlinear support vector machines for each cluster. According to the geometric feature of irregular borders of enclosing sphere, the geometric center for a stable equilibrium point is constructed and a dual-weighted center of two relevant weights is formed through calculating density center of the cluster. At last, the classification of large data set is carried out by solving the problem of weighted minimum enclosing ball. Compared with the other two algorithms of controlled group, the proposed algorithm shows shorter training time and testing time as well as higher testing precision except for some individual data sets.
关 键 词:双中心 超曲面 局部支持向量机 最小闭球 稳定均衡向量
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.193