检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]第二炮兵工程大学自动控制系,西安710025 [2]西北工业大学自动化学院,西安710072
出 处:《中国惯性技术学报》2014年第1期89-93,共5页Journal of Chinese Inertial Technology
基 金:国防预研(103030203)
摘 要:基本蚁群算法的地磁匹配算法易陷入局部最优且算法鲁棒性、稳定性较低,针对这些不足提出一种改进的地磁匹配导航算法。新算法改进了蚁群算法的信息素更新策略并引入参数自适应调整来避免算法陷入局部最优;同时采用带有记忆功能和自适应选择初始温度的模拟退火(SA)算法,无论算法是否陷入局部最优时通过在本次迭代最优路径上强行随机扰动以实现继续寻优。实验结果表明,新算法比传统蚁群优化(ACO)算法有更强的鲁棒性和稳定性。In view that the geomagnetic matching algorithm based on the basic ant colony algorithm tends to fall in local optimum and the robust and stability of the basic algorithm are low, an improved geomagnetic matching navigation algorithm is proposed. To avoid the algorithm fall in the local optimum, the strategy of pheromone updating is improved and the adaptive adjustment of parameters are introduced. Meanwhile, the simulated annealing algorithm with memory function and adaptive determination of initial temperature is also introduced. So whether the algorithm fall in local optimum or not, it could continue to search better route by applying random disturbances on the best route of this iteration to achieve continued optimization. The experiment results show that the new algorithm is more robust and stability than traditional ant colony optimization.
关 键 词:地磁匹配导航 自适应 模拟退火 蚁群优化 精英策略
分 类 号:V249.32[航空宇航科学与技术—飞行器设计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63