机构地区:[1]State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences [2]University of Chinese Academy of Sciences [3]Semiconductor Manufacturing International Corporation
出 处:《Chinese Physics B》2014年第8期177-182,共6页中国物理B(英文版)
基 金:Project supported by the National Basic Research Program of China(Grant Nos.2010CB934300,2013CBA01900,2011CBA00607,and 2011CB9328004);the "Strategic Priority Research Program" of the Chinese Academy of Sciences(Grant No.XDA09020402);the Fund from the Science and Technology Council of Shanghai,China(Grant No.13DZ2295700);the Science Fund from the Chinese Academy of Sciences(Grant No.20110490761);the National Natural Science Foundation of China(Grant Nos.61076121,61176122,and 61106001)
摘 要:In the paper, chemical mechanical planarization (CMP) of Ge2 Sb2Te5 (GST) is investigated using IC 1010 and Politex reg pads in acidic slurry. For the CMP with blank wafer, it is found that the removal rate (RR) of GST increases with the increase of pressure for both pads, but the RR of GST polished using IC 1010 is far more than that of Politex reg. To check the surface defects, GST film is observed with an optical microscope (OM) and scanning electron microscope (SEM). For the CMP with Politex reg, many spots are observed on the surface of the blank wafer with OM, but no obvious spots are observed with SEM. With regard to the patterned wafer, a few stains are observed on the GST cell, but many residues are found on other area with OM. However, from SEM results, a few residues are observed on the GST cell, more dielectric loss is revealed about the trench structure. For the CMP with IC1010, the surface of the polished blank wafer suffers serious scratches found with both OM and SEM, which may result from a low hardness of GST, compared with those of IC1010 and abrasives. With regard to the patterned wafer, it can achieve a clean surface and almost no scratches are observed with OM, which may result from the high-hardness SiO2 film on the surface, not from the soft GST film across the whole wafer. From the SEM results, a clean interface and no residues are observed on the GST surface, and less dielectric loss is revealed. Compared with Politex reg, the patterned wafer can achieve a good performance after CMP using IC1010.In the paper, chemical mechanical planarization (CMP) of Ge2 Sb2Te5 (GST) is investigated using IC 1010 and Politex reg pads in acidic slurry. For the CMP with blank wafer, it is found that the removal rate (RR) of GST increases with the increase of pressure for both pads, but the RR of GST polished using IC 1010 is far more than that of Politex reg. To check the surface defects, GST film is observed with an optical microscope (OM) and scanning electron microscope (SEM). For the CMP with Politex reg, many spots are observed on the surface of the blank wafer with OM, but no obvious spots are observed with SEM. With regard to the patterned wafer, a few stains are observed on the GST cell, but many residues are found on other area with OM. However, from SEM results, a few residues are observed on the GST cell, more dielectric loss is revealed about the trench structure. For the CMP with IC1010, the surface of the polished blank wafer suffers serious scratches found with both OM and SEM, which may result from a low hardness of GST, compared with those of IC1010 and abrasives. With regard to the patterned wafer, it can achieve a clean surface and almost no scratches are observed with OM, which may result from the high-hardness SiO2 film on the surface, not from the soft GST film across the whole wafer. From the SEM results, a clean interface and no residues are observed on the GST surface, and less dielectric loss is revealed. Compared with Politex reg, the patterned wafer can achieve a good performance after CMP using IC1010.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...