检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]成都理工大学
出 处:《网友世界》2014年第12期22-22,共1页Net Friends
摘 要:支持向量机(Support Vector Machine,SVM)是根据有限的样本信息在模型的复杂性和学习能力之间寻求最佳折中,以期获得最好的泛化能力,并且在解决文本分类中表现出很多特有的优势。本文以文本分类为主要任务,讨论了目前存在的几种二叉树多类SVM算法组合策略。并用中改进的多类SVM分类算法作为文本分类器核心算法,并在多类文本分类实验中进行验证。
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222