检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安航空学院车辆与医电工程系,陕西西安710077 [2]西安电子工程研究所,陕西西安710100
出 处:《计算机技术与发展》2014年第8期80-83,共4页Computer Technology and Development
基 金:陕西省自然科学基金(2012JM8043)
摘 要:发现离群点并合理地解释离群点对数据挖掘结果的运用有重要意义,通过对离群点属性的检测可以发现其离群特性,进而更加准确地解释聚类结果。针对在聚类结果中出现的不同离群点及其特性,提出将层次聚类算法应用于离群点分析,通过元胞自动机距离变换算法实现凝固层次聚类,实现了簇间距离的度量;定义了演化周期上的平均度量距离,能够发现不同聚类层次上的离群点及其离群特性。该算法能够在得到聚类结果的同时,有效地解释离群点的属性,并具有较低的计算复杂度和并行计算以及向高维空间扩展的特性。通过试验数据进行了实证研究,验证了算法的有效性。It is very important for data mining results to find the outliers and interpret them reasonably. It can find the characteristics from the group to detect the outliers attribute,interpreting the clustering results more accurately. In view of the various outliers and their characteristics in clustering results,hierarchical clustering algorithm is applied in outlier analysis,achieving the agglomerative clustering by the distance transform method based on Cellular Automata ( CA) ,which could measure the distance between clusters. The average metric is defined,which could discover outliers and their characteristics on each clustering result. The proposed algorithm can obtain clustering results,simultaneously effectively interpreting the properties of outliers,which is verified to be lower in computational complexity and has the characteristics of extending to high dimensional space and parallel computing. Simulation results of the sample are given to illustrate the effectiveness of the algorithm.
分 类 号:TP311.1[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222