检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华北电力大学新能源电力系统国家重点实验室,保定071003
出 处:《电力系统及其自动化学报》2014年第7期51-56,共6页Proceedings of the CSU-EPSA
摘 要:以电力系统状态信息完全可观测为前提,配置相量测量单元PMU(phasor measurement unit)数目最少为目标,建立PMU优化配置问题的数学模型,并应用一种变权重蛙跳算法进行求解。首先以混合蛙跳算法为基础,建立考虑PMU配置数目和系统可观性的适应度函数;然后通过改变蛙体基因段的权重,指引蛙体跳跃的方向,解决了收敛性较差和跳出局部最优解较慢的缺点,实现了最优配置方案多样性;最后进行冗余度比较确定最优方案。通过新英格兰39母线系统和IEEE 57母线系统的仿真分析,验证本文方法较一般算法具有更佳的收敛效果和全局性。Presuming that the observability of grid states is totally confirmed, this paper presents a variable weighting frog leaping algorithm to construct the mathematical model of optimal phasor measurement unit (PMU)placement to minimize the number of PMU for placement. Firstly, based on the hybrid frog leaping algorithm, the fitness function is given according to the number of phasor measurement unit and observability of system. Then, the modulation of genetic segment weighting can instruct the frog leaping direction, boost the convergence performance, tackle the system drawback of avoiding local optimums, and afford optimal placement the diversity. Finally, the optimal solution is determined according to the redundancy to achieve. Simulated results on New England 39-bus system and IEEE 57-bus system indicate that the algorithm presented in this paper generates better convergence performance and global optimality than other algorithms.
关 键 词:相量测量单元 可观测性 混合蛙跳算法 变权重蛙跳算法 适应度函数 权重系数 冗余度
分 类 号:TM711[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31