基于邻域关系的网络入侵检测特征选择  被引量:6

Feature Selection of Intrusion Detection Based on Neighborhood Relation

在线阅读下载全文

作  者:陈玉明[1] 谢斐星 吴克寿[1] 唐朝辉[1] 

机构地区:[1]厦门理工学院计算机科学与技术系,福建厦门361024

出  处:《常州大学学报(自然科学版)》2014年第3期1-5,共5页Journal of Changzhou University:Natural Science Edition

基  金:国家自然科学基金资助项目(61103246)

摘  要:入侵检测数据集具有数据量大、特征数众多、连续型数据的特点。粗糙集是一种有效处理不确定性、不一致性、海量数据的有效分类工具,其特点是保持入侵检测数据集的分类能力不变,进行特征选择。为了避免传统粗糙集特征选择方法所必需的离散化过程带来的信息损失,引入邻域粗糙集模型,提出基于邻域关系的网络入侵检测数据特征选择方法。该方法从所有特征出发,根据特征重要度逐步删除冗余的特征,最后得到关键特征组进行分类研究。在CUP99入侵检测数据集上进行特征选择,并进行了分类实验,实验结果表明该方法是有效可行的。Since there are many features in intrusion detection data, which is large and continuous, feature selection plays an important role in intrusion detection. Rough set theory is an efficient classification tool to deal with uncertain, inconsistent and large data. One limitation of rough set theory is the lack of effective methods for processing real valued data. However, intrusion detection data is always continuous. Discrete methods can result in information loss. This paper investigated an approach to intrusion detection feature selection based on neighborhood rough set theory. The approach starts from all the features to gradually remove the redundant features, and finally get the key features of group classification study based on characteristics important degree. To evaluate the performance of the proposed approach, we applied it to CUP99 intrusion detection data set and compared our results with traditional rough set feature selection. Experimental results show that our algorithm is more effective for selecting high discriminative feature in a classification task.

关 键 词:粗糙集 邻域关系 入侵检测 特征选择 

分 类 号:TP309[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象