基于信息融合与GM的石油罐区安全监控预测模型  

Petroleum tank farm safety monitoring forecasting model based on information fusion and GM

在线阅读下载全文

作  者:潘长城[1] 王时彬 王如君[3] 康荣学[3] 

机构地区:[1]首都经济贸易大学安全与环境工程学院,北京100070 [2]昆明理工大学国土资源工程学院,云南昆明650093 [3]中国安全生产科学研究院,北京100012

出  处:《中国安全生产科学技术》2014年第7期21-25,共5页Journal of Safety Science and Technology

基  金:"十二五"国家科技支撑计划项目(2012BAK03B03)

摘  要:近年来,石油罐区安全事故发生频率呈不断上升趋势。为有效增强罐区安全监控预警系统监测数据的可靠性,并实现对事故的早期预警,基于多传感器信息融合技术和灰色模型(GM)理论,建立出石油罐区安全监控预测模型。首先,研究了基于递推最小二乘法改进的最优加权融合算法,并将其作为一级(特征级)融合模型,其次,介绍分析了灰色预测理论及GM(1,1)模型的实现过程,最后建立出基于GA-BP神经网络算法的二级(决策级)数据融合模型,并得到石油罐区安全监控预测模型。In recent years,oil tank farm safety accident frequency showed a trend of rising. In order to effectively enhance the terminal security monitoring early warning system for the reliability of the monitoring data,and realize the early warning of accidents. The oil tank farm safety monitoring model was built based on multi-sensor informa-tion fusion technology and the theory of grey model( GM). First of all,the improved optimal weighted fusion algo-rithm based on the recursive least square method was studied and it was used as a level 1( characteristics)fusion model,secondly,the analysis of the grey prediction theory and realization process of GM(1,1)model was intro-duced,and finally a secondary based on GA-BP neural network algorithm( decision)data fusion model was estab-lished,and the oil tank farm safety monitoring model was achieved.

关 键 词:信息融合 最优加权融合 遗传算法( GA) BP神经网络 安全监控 

分 类 号:X924.3[环境科学与工程—安全科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象