检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张维[1,2,3] 苗夺谦[1,3] 高灿 岳晓冬[5]
机构地区:[1]同济大学电子与信息工程学院,上海201804 [2]上海电力学院计算机科学与技术学院,上海200090 [3]嵌入式系统与服务计算教育部重点实验室(同济大学),上海201804 [4]中联重科股份有限公司,长沙410013 [5]上海大学计算机工程与科学学院,上海200444
出 处:《计算机研究与发展》2014年第8期1811-1820,共10页Journal of Computer Research and Development
基 金:国家自然科学基金项目(61075056;61273304;61202170;61103067);中央高校基本科研业务费专项资金项目
摘 要:Pawlak粗糙集理论是一种有监督学习模型,只适合处理离散型数据.但在一些现实问题中存在着大量的连续型数据,并且有标记数据很有限,更多的是无标记数据.结合邻域粗糙集和协同学习理论,提出了适合处理连续型数据并可有效利用无标记数据提升分类性能的邻域粗糙协同分类模型.该模型首先构建了邻域粗糙半监督约简算法,并利用该算法提取两个差异性较大的约简构造基分类器,然后迭代地在无标记数据上交互协同学习.UCI数据集实验对比分析表明,与其他同类模型相比,该模型有较好的性能.Pawlak's rough set theory, as a supervised learning model, is only applicable for discrete data. However it is often the case that practical data sets are continuous and involve both few labeled and abundant unlabeled data, which is outside the realm of Pawlak's rough set theory. In this paper, a neighborhood rough sets based co-training model for classification is proposed, which could deal with continuous data and utilize the unlabeled and labeled data to achieve better performance than the classifier learned only from few labeled data. Firstly, a heuristic algorithm based on neighborhood mutual information is put forward to compute the reduct of partially labeled continuous data. Then two diverse reducts are generated. The model employs the two reducts to train two base classifiers on the labeled data, and makes the two base classifiers teach each other on the unlabeled data to boot the their performance iteratively. The experimental results on selected UCI datasets show that the proposed model are more effective to deal with partially labeled continuous data than some representative ones in learning accuracy.
关 键 词:邻域粗糙集 邻域互信息 半监督约简 协同学习 连续型数据
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117