检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴虎胜[1,2] 张凤鸣[1] 战仁军[2] 汪送[2] 张超[1]
机构地区:[1]空军工程大学装备管理与安全工程学院,陕西西安710051 [2]武警工程大学装备工程学院,陕西西安710086
出 处:《系统工程与电子技术》2014年第8期1660-1667,共8页Systems Engineering and Electronics
基 金:国家自然科学基金(71171199)资助课题
摘 要:狼群算法(wolf pack algorithm,WPA)源于狼群在捕食及其猎物分配中所体现的群体智能,已被成功应用于复杂函数求解。在此基础上,通过定义运动算子,对人工狼位置、步长和智能行为重新进行二进制编码设计,提出了一种解决离散空间组合优化问题的二进制狼群算法(binary wolf pack algorithm,BWPA)。该算法保留了狼群算法基于职责分工的协作式搜索特性,选取离散空间的经典问题——0-1背包问题进行仿真实验,具体通过10组经典的背包问题算例和BWPA算法与经典的二进制粒子群算法、贪婪遗传算法、量子遗传算法在求解3组高维背包问题时的对比计算,例证了算法具有相对更好的稳定性和全局寻优能力。The wolf pack algorithm (WPA),inspired by swarm intelligence of wolf pack in their prey hun-ting behaviors and distribution mode,has been proposed and successfully applied in complex function optimiza-tion problems.Based on the designing of the move operator,the artificial wolves’position,step-length and in-telligent behaviors are redesigned by binary coding,and a binary wolf pack algorithm (BWPA)is proposed to solve combinatorial optimization problems in discrete spaces.BWPA preserves the feature of cooperative search-ing based on job distribution of the wolf pack and is applied to 10 classic 0-1 knapsack problems.Moreover,the 3 high-dimensional 0-1 knapsack problems are tested.All results show that BWPA has better global convergence and computational robustness and outperforms the binary particle swarm optimization algorithm,the greedy genetic al-gorithm and the quantum genetic algorithm,especially for high-dimensional knapsack problems.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222