检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]苏州大学计算机科学与技术学院,江苏苏州215021 [2]苏州经贸职业技术学院信息系,江苏苏州215009
出 处:《计算机应用研究》2014年第9期2588-2591,共4页Application Research of Computers
基 金:国家自然科学基金资助项目(61170124)
摘 要:提出了一种具有学习行为的协同量子粒子群算法(LCQPSO)。针对量子粒子群(QPSO)存在的早熟收敛问题,从两方面对其进行改进:引入多子群协同搜索策略提高种群的全局搜索能力,使其在进化后期依然保持多样性;赋予粒子学习行为,提高种群的局部搜索能力。实验中对LCQPSO算法的子群规模与学习概率参数进行了分析,并利用标准测试函数对LCQPSO与PSO、QPSO等算法进行了比较测试,结果表明LCQPSO算法具有更优秀的收敛速度与精度,且能够有效地避免陷入局部极值。This paper proposed a cooperative quantum-behaved particle swarm optimization algorithm with learning behavior (LCQPSO). For the problem of premature convergence of quantum-behaved particle swarm optimization (QPSO) , the QPSO was improved from 2 ways. First, it adopted the strategy of cooperative searching by muhi-subpopulations to enhance the global searching ability, it also ensured the population' s diversity in the later period of evolution. Second, it gave particles the abili- ty of learning from others, which yielded population' s better local searching ability. In the experiments, this paper discussed the subpopulation' s scale and particle' s learning probability parameter, and used several well-known benchmark functions to evaluate the performance of LCQPSO, along with the comparison to PSO, QPSO, etc. The simulation results show that LCQP- SO has faster convergence speed and better precision, it can avoid falling into the local extreme effectively.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.65