检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:林楠[1,2] 姜琦刚[1] 陈永良[3] 杨佳佳[4] 崔瀚文[1]
机构地区:[1]吉林大学地球探测科学与技术学院,吉林长春130026 [2]吉林建筑大学测绘与勘查工程学院,吉林长春130018 [3]吉林大学综合信息矿产预测研究所,吉林长春130026 [4]中国地质调查局沈阳地质调查中心,辽宁沈阳110034
出 处:《地球学报》2014年第4期487-494,共8页Acta Geoscientica Sinica
基 金:国家自然科学基金项目(编号:40872193;41072244)资助
摘 要:利用核主成分(KPCA)较强的非线性特征提取能力对Hyperion高光谱数据进行降维及光谱特征提取,将特征信息作为支持向量机(SVM)建模样本的观测数据,建立KPCA-SVM回归模型,利用该模型进行研究区岩石氧化物百分含量反演。同时,依据国际地质科学联合会提出的QAPF火成岩分类方案对区内火成岩进行了岩性划分。研究结果表明:KPCA降维后的高光谱数据反演氧化物含量的效果良好;而基于QAPF模型的火成岩划分结果也十分理想,分类结果对已有地质图进行了有效的补充。KPCA-SVM理论模型为利用高光谱遥感数据进行岩性分类提供了一种快速可行的方法。In this paper, the non-linear feature extraction capability of KPCA was used to reduce dimensionality and extract spectral features of Hyperion hyperspectral data. The extracted feature information was employed as the sample data and the KPCA-SVM regression model was established. According to this model, the percentage of rock oxide in the study area was retrieved. The QAPF igneous rock classification scheme proposed by lUGS was utilized to classify the igneous rocks. The oxide content retrieved from the hyperspectrM data became more reasonable by using KCPA for dimension reduction. In accordance with the QAPF model, the igneous rock classification results were most satisfactory, and the classification results became an effective complement of the existing geological map. It is proved that the KPCA-SVM method is a fast and feasible means for lithologic classification based on hyperspectral remote sensing data.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.58