南极假丝酵母在纳米聚苯乙烯上的共价固载及其在微波辅助酯化反应中的应用(英文)  被引量:2

Covalent immobilization of Candida antarctica lipase B on nanopolystyrene and its application to microwave-assisted esterification

在线阅读下载全文

作  者:Attaullah Bukhari Ani Idris Madiha Atta Teo Chee Loong 

机构地区:[1]Department of Bioprocess Engineering, Faculty of Chemical Engineering, c/o Institute of Bioproduct Development, University Teknology Malaysia, 81310 UTM Skudai, Johor, Malaysia

出  处:《催化学报》2014年第9期1555-1564,共10页

基  金:support by the Ministry of Higher Education (MOHE) Malaysia, Ministry ofAgricultural (MOA) and University Teknology Malayisa

摘  要:Nanopolystyrene was used as a solid support for the covalent immobilization of Candida antarctica lipase B(Cal B) using the photoreactive reagent 1‐fluoro‐2‐nitro‐4‐azido benzene(FNAB) as a cou‐pling reagent. The obtained derivative was then used as a biocatalyst in a microwave assisted ester‐ification experiment. Factors such as contact time, pH, and enzyme concentration were investigated during immobilization. The hydrolytic activity, thermal, and operational stability of immobi‐lized‐Cal B were determined. The maximum immobilized yield(218 μg/mg support) obtained at pH 6.8 exhibited optimum hydrolytic activity(4.42 × 103 mU p‐nitrophenol/min). The thermal stability of Cal B improved significantly when it was immobilized at pH 10, however, the immobilized yield was very low(93.6 μg/mg support). The immobilized‐Cal B prepared at pH 6.8 and pH 10 retained 50% of its initial activity after incubation periods of 14 and 16 h, respectively, at 60 °C. The opera‐tional stability was investigated for the microwave assisted esterification of oleic acid with metha‐nol. Immobilized‐Cal B retained 50% of its initial activity after 15 batch cycles in the micro‐wave‐assisted esterification. The esterification time was notably reduced under microwave irradia‐tion. The combined use of a biocatalyst and microwave heating is thus an alternative total green synthesis process.Nanopolystyrene was used as a solid support for the covalent immobilization of Candida antarctica lipase B (CalB) using the photoreactive reagent 1-fluoro-2-nitro-4-azido benzene (FNAB) as a cou-pling reagent. The obtained derivative was then used as a biocatalyst in a microwave assisted ester-ification experiment. Factors such as contact time, pH, and enzyme concentration were investigated during immobilization. The hydrolytic activity, thermal, and operational stability of immobi-lized-CalB were determined. The maximum immobilized yield (218 μg/mg support) obtained at pH 6.8 exhibited optimum hydrolytic activity (4.42 ×103 mU p-nitrophenol/min). The thermal stability of CalB improved significantly when it was immobilized at pH 10, however, the immobilized yield was very low (93.6 μg/mg support). The immobilized-CalB prepared at pH 6.8 and pH 10 retained 50%of its initial activity after incubation periods of 14 and 16 h, respectively, at 60 ℃. The opera-tional stability was investigated for the microwave assisted esterification of oleic acid with metha-nol. Immobilized-CalB retained 50% of its initial activity after 15 batch cycles in the micro-wave-assisted esterification. The esterification time was notably reduced under microwave irradia-tion. The combined use of a biocatalyst and microwave heating is thus an alternative total green synthesis process.

关 键 词:共价固定化 微波辅助 酯化反应 酵母脂肪酶 南极 对硝基苯酚 生物催化剂 运行稳定性 

分 类 号:TQ926[轻工技术与工程—发酵工程] O621.25[理学—有机化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象