检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]海军航空工程学院,烟台264001
出 处:《电子测量技术》2014年第8期56-59,共4页Electronic Measurement Technology
摘 要:为了实现对测量仪器校准间隔的优化,对其校准数据进行建模,用GM(1,1)灰色预测模型预测参数的总体发展趋势,在此基础上利用BP神经网络对残差序列进行建模,通过训练补偿预测参数在总体趋势下的随机波动,从而得到校准数据的预测值。给出基于残差补偿的GM预测模型,对校准间隔进行动态优化,并通过实验对预测模型进行了验证。结果表明,此模型得到了较好的预测结果,既能预测总体趋势也能适应随机波动,并且简单易行,具有较强的普适性。In order to realize the optimization of measuring instrument calibration interval , set up the moclei of tne calibration data, and use GM(1,1) prediction model to predict the integral developing trend. Then BP neural network is used to build the model of residual, through training to compensate the random fluctuation and get the forecast value of calibration data. GM prediction model based on the residual compensation is given to optimize the calibration interval dynamically, and forecasting model is verified through experiments. Results show that this model has well predicting effect. It can not only predict the integral trend, but also adapt to random fluctuations. Beyond that it is simple, and has strong universality.
分 类 号:TP13[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.124