检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《模糊系统与数学》2014年第3期160-164,共5页Fuzzy Systems and Mathematics
基 金:国家自然科学基金资助项目(61074129;61103018;11101352);江苏省自然科学基金资助项目(BK2010313;BK2011442);国家重点实验室开放课题(SKLSDE-2011KF-08)
摘 要:对论域U上一般知识引入了知识交派生概念,研究了知识交派生集族的性质,证明了在论域U有限且给定知识对并关闭时,知识交派生集族形成一个拓扑。举例说明了论域U无穷且知识对任意并关闭时,其有限交派生集族不必形成一个拓扑。我们还给出了有穷论域上知识交派生的有效算法,证明了这种算法确实给出了交派生集族。For a universe U, we PrOPosed the concept of meet-generating of knowledge. We also studied properties of meet-generating of knowledge. It is proved that when U is a finite unverse and a given family of sets on U is closed w. r. t unions, then the meet-generating of the family forms a topology on U. A counterexample is given to show that if U is infinite, then the meet-generating of a family needn' t be a topology generally. An effective algorism is constructed to compute the meet-generating of a family on a finite universe. It is proved that the algorism indeed computes the meet-generating.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117