检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张建成[1] 李倩[2] 周春霞[3] 庞春江[1] 丁晓哲
机构地区:[1]华北电力大学电气与电子工程学院,河北保定071003 [2]唐山供电公司,河北唐山063500 [3]中国电力科学研究院,北京100192
出 处:《华北电力大学学报(自然科学版)》2014年第4期15-21,共7页Journal of North China Electric Power University:Natural Science Edition
基 金:国家自然科学基金资助项目(51177047)
摘 要:以光伏发电系统的输出功率为研究对象,通过分析光伏发电功率的影响因素,利用相似日原理生成训练样本,将混沌搜索和自适应变异思想引入粒子群算法中,提出混沌搜索的自适应变异粒子群优化BP神经网络的预测模型。该模型较好地克服了BP网络初始化的随机性问题,提高了模型的泛化能力、收敛速度与预测精度。利用光伏电站与气象观测站的数据进行仿真分析与验证,结果表明:优化后模型的预测精度高于优化前,且混沌搜索的AMPSO的优化效果好于单纯PSO的优化效果。Based on the analysis of influential factors of output power in photovoltaic systems, the training samples are generated according to the similar day principle. The chaos search theory and adaptive mutation theory are introduced to improve the particle swarm optimization algorithm, then the prediction model based on chaos search and AMPSO-BP neural network is proposed. The model can preferably overcome the randomness of BP network initialization, and im- prove the generalization ability, convergence speed and prediction accuracy. Different models are trained and verified with the data of photovohaic power station and meteorological observation station. Results show that the optimization model has higher prediction accuracy, and the optimization results of adaptive mutation particle swarm optimization based on chaos search is better than that of simple particle swarm optimization.
关 键 词:光伏发电系统 相似日 混沌搜索 自适应变异 粒子群算法
分 类 号:TM615[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222