基于灰色-神经网络联合模型的大型冷却塔风效应预测  被引量:6

Prediction on Wind Effects of Large Cooling Towers Based on Grey-Neural Network Joint Model

在线阅读下载全文

作  者:柯世堂[1] 初建祥 陈剑宇 瞿宗新 

机构地区:[1]南京航空航天大学土木工程系,南京210016 [2]内蒙古电力勘察设计院水工处,呼和浩特010020

出  处:《南京航空航天大学学报》2014年第4期652-658,共7页Journal of Nanjing University of Aeronautics & Astronautics

基  金:国家自然科学基金(51208254)资助项目;江苏省自然科学基金(BK2012390)资助项目;博士后科研基金(2013M530255;1202006B);江苏高校优势学科建设工程资助项目

摘  要:基于灰色GM(1,1)模型和BP人工神经网络,建立灰色-神经网络联合的大型冷却塔平均位移和风振系数预测模型。该联合模型增强了预测结果的自适应性和准确性,能解决因气弹模型试验中测点样本数目太少而无法直接建立神经网络预测模型的局限。通过某大型冷却塔气弹模型风洞试验结果的算例分析,表明该组合模型对于平均位移和风振系数的预测结果均与试验结果吻合良好,随后基于已训练的模型给出结构风振反应精细化分析所需的输入参数预测结果。这为冷却塔结构风效应的精细化研究提供了一个新的有效方法。Based on grey GM(1,1) model and BP artificial neural network,the grey-neural network joint model is established,which is used to predict the displacement and wind induced coefficients for large cooling towers.Using the joint model,the influence caused by little raw data is overcome.Furthermore the self-adaptability and predicting precision for wind-induced responses of large cooling towers are enhanced.Through comparative analysis of the wind-induced responses of domestic large hyperbolic cooling tower in aero-elastic model wind tunnel test,it can be found that the prediction results of wind-induced responses and wind vibration coefficients are in good agreement with the experimental results,which shows good validity and stability of the model,and then input parameters of refined research on wind induced response are predicted.The proposed method provids a new and effective idea for the refined research on wind effects of large cooling towers.

关 键 词:大型冷却塔 灰色系统 神经网络 风振预测 风振系数 风洞试验 

分 类 号:TU279.7[建筑科学—建筑设计及理论] V211.74[航空宇航科学与技术—航空宇航推进理论与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象