Monitoring Perennial Sub-Surface Waterlogged Croplands Based on MODIS in Jianghan Plain, Middle Reaches of the Yangtze River  被引量:1

Monitoring Perennial Sub-Surface Waterlogged Croplands Based on MODIS in Jianghan Plain, Middle Reaches of the Yangtze River

在线阅读下载全文

作  者:XIAO Fei LI Yuan-zheng DU Yun LING Feng YAN Yi FENG Qi BAN Xuan 

机构地区:[1]Institute of Geodesy and Geophysics, Chinese Academy of Sciences

出  处:《Journal of Integrative Agriculture》2014年第8期1791-1801,共11页农业科学学报(英文版)

基  金:supported by the National Basic Research Program of China (2012CB417001);the National Natural Science Foundation of China (41271125)

摘  要:Perennial waterlogged soil(PWS) is induced by the high level of groundwater, and has a persistent impact on natural ecosystems and agricultural production. Traditionally, distribution information regarding PWS is mainly collected from in situ measurements through groundwater level surveys and physicochemical property analyses. However, in situ measurements of PWS are costly and time-consuming, only rough estimates of PWS areas are available in some regions. In this paper, we developed a method to monitor the perennial waterlogged cropland using time-series moderate resolution imaging spectroradiometer(MODIS) data. The Jianghan Plain, a floodplain located in the middle reaches of the Yangtze River, was selected as the study area. Temporal variations of the enhanced vegetation index(EVI), night land surface temperature(LST), diurnal LST differences(ΔLST), albedo, and the apparent thermal inertia(ATI) were used to analyze the ecological and thermodynamic characteristics of the waterlogged croplands. To obtain pure remote sensing signatures of the waterlogged cropland from mixed pixels, the croplands were classified into different types according to soil and land cover types in this paper, and a linear mixing model was developed by fitting the signatures using the multiple linear regression approach. Afterwards, another linear spectral mixing model was used to get the proportions of waterlogged croplands in each 1 km×1 km pixel. The result showed an acceptable accuracy with a root-mean-square error of 0.093. As a tentative method, the procedure described in this paper works efficiently as a method to monitor the spatial patterns of perennial sub-surface waterlogged croplands at a wide scale.Perennial waterlogged soil(PWS) is induced by the high level of groundwater, and has a persistent impact on natural ecosystems and agricultural production. Traditionally, distribution information regarding PWS is mainly collected from in situ measurements through groundwater level surveys and physicochemical property analyses. However, in situ measurements of PWS are costly and time-consuming, only rough estimates of PWS areas are available in some regions. In this paper, we developed a method to monitor the perennial waterlogged cropland using time-series moderate resolution imaging spectroradiometer(MODIS) data. The Jianghan Plain, a floodplain located in the middle reaches of the Yangtze River, was selected as the study area. Temporal variations of the enhanced vegetation index(EVI), night land surface temperature(LST), diurnal LST differences(ΔLST), albedo, and the apparent thermal inertia(ATI) were used to analyze the ecological and thermodynamic characteristics of the waterlogged croplands. To obtain pure remote sensing signatures of the waterlogged cropland from mixed pixels, the croplands were classified into different types according to soil and land cover types in this paper, and a linear mixing model was developed by fitting the signatures using the multiple linear regression approach. Afterwards, another linear spectral mixing model was used to get the proportions of waterlogged croplands in each 1 km×1 km pixel. The result showed an acceptable accuracy with a root-mean-square error of 0.093. As a tentative method, the procedure described in this paper works efficiently as a method to monitor the spatial patterns of perennial sub-surface waterlogged croplands at a wide scale.

关 键 词:perennial waterlogged soil WATERLOGGING MODIS enhanced vegetation index 

分 类 号:S153[农业科学—土壤学] S422[农业科学—农业基础科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象