PMSM最优自适应CDKF估计方法  

Adaptive CDKF Algorithm Research and Application on PMSM's Sensorless Vector Control

在线阅读下载全文

作  者:丁国强[1] 徐洁[2] 熊明[1] 乔相伟 

机构地区:[1]郑州轻工业学院电气信息工程学院,河南郑州450002 [2]郑州轻工业学院软件学院,河南郑州450002 [3]西安航天精密机电研究所,陕西西安710100

出  处:《郑州大学学报(工学版)》2014年第4期69-73,共5页Journal of Zhengzhou University(Engineering Science)

基  金:国家自然科学基金联合资助项目(U1204603);郑州轻工业学院博士基金项目(2011BSJJ00048)

摘  要:基于永磁同步电机(PMSM)无传感器矢量控制性能要求,提出一种无传感器PMSM非线性系统参数辨识最优自适应中心差分估计(Adaptive Central Divided Kalman Filtering,ACDKF)方法.该法基于Bayesian最优估计框架,利用Stirling多项式插值逼近确定Sigma采样点及其权值,构建CDKF估计算法;同时考虑系统噪声统计时变统计特性,基于估计信息和残差实现噪声自适应在线估计调整,面向永磁同步电机复杂工况条件下观测电流信号,实时估计转子转速和角位移.仿真结果表明该方法既能获得较高的估计精度,又能有效改善估计计算稳定性,满足永磁同步电机无传感器矢量控制性能要求.To satisfy the sensorless vector control performance for permanent magnet synchronous motor (PMSM), a sensorless control method based on optimal adaptive CDKF algorithm applied on nonlinear PMSM' s parameters estimation is presented, which is based on Bayesian optimal estimation frame and second- order Stirling polynomial interpolation approximation method to determine Sigma points and its weight coefficient, and meanwhile the statistical characteristics changing over time of the system and measurement noises calculated adaptively. With the ACDKF algorithm and the current signals of the PMSM under complicated con- ditions it calculates the speed and magnet angle displacement, then the speed and magnet angle displacement of vector control system are obtained. The simulation data demonstrate that the proposed method has better estimation precision and computation efficiency and numerical stability than others CDKF algorithms.

关 键 词:永磁同步电机 无传感器控制 CDKF算法 自适应噪声估计 

分 类 号:TM341[电气工程—电机] TM351

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象