检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵兴祥[1] 欧全宏[1] 刘刚[1] 郝建明[1] 周湘萍[1]
机构地区:[1]云南师范大学物理与电子信息学院,昆明市呈贡区雨花片区1号650500
出 处:《光谱实验室》2014年第5期574-578,共5页Chinese Journal of Spectroscopy Laboratory
基 金:国家自然科学基金项目(30960179)资助.
摘 要:利用傅里叶变换红外光谱结合基于连续小波变换的偏最小二乘判别分析(PLS-DA)和反向传播网络(BPNN)识别柑橘碎叶病和正常叶。采用Haar、Mexh和Morlet小波为母小波对样品的红外光谱进行多尺度连续小波变换,经比较发现第7尺度小波系数具有明显的差异。提取该尺度3个区域的小波系数作为特征向量建立PLS-DA和BPNN模型。PLS-DA模型对未知样品的预测正确率为75%,BPNN模型对未知样品的预测正确率为95%,结果表明小波变换结合BPNN用于傅里叶变换红外光谱技术能够准确地识别柑橘碎叶病和正常叶,有望为柑橘病害检测提供快速、有效的方法。Partial Least Squares-discriminant analysis (PLS-DA) and Back Propagation Neural Network (BPNN) based on Continuous wavelet transform (CWT) is applied to identify citrus tatter leaf (CTL) and healthy leaves by Fourier transform infrared spectroscopy (FTIR). CWT is applied to analyze the FTIR spectra of all samples. By comparison, the decomposition level 7 is obvious differences, and three regions of this level are selected as feature vector. This feature vector is used to train PLS-DA and BPNN models. The accuracy of BPNN (95%) is better than PLS-DA (75%). It shows that LDA and BPNN algorithms based on CWT can be successfully used for identification citrus tatter leaf and healthy leaves with FTIR spectroscopy. It also provides technology suppoi't to detect citrus tatter leaf in early stage quickly and effectively.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7