检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:余文利[1] 姚鑫骅[2] 傅建中[2] 孙磊[2]
机构地区:[1]衢州职业技术学院,衢州324000 [2]浙江大学,杭州310027
出 处:《中国机械工程》2014年第17期2361-2368,共8页China Mechanical Engineering
基 金:国家自然科学基金资助项目(51105336);浙江省自然科学基金资助项目(Y1100281);浙江省重点科技创新团队计划资助项目(2009R50008)
摘 要:最小二乘支持向量机(LS-SVM)模型是表征数控机床热误差特性的有效工具,但该模型中的参数设置直接影响建模的精度。传统的基于交叉验证法或网格法的参数获取方法存在计算量大、精度低的缺点,且同一组模型常数往往不能准确表征机床多种工况条件下所产生的热误差。为解决这一问题,提出了一种基于贝叶斯证据框架理论的LS-SVM多工况参数优化方法。通过测量不同工况下数控机床温度值与主轴热变形量,采用贝叶斯证据框架的3个推断对LS-SVM模型进行训练并对参数进行辨识和优化,推导出了不同工况所对应的最优模型和参数。热误差建模实验验证了该参数优化方法的有效性,结果显示,经优化的模型具有泛化能力强、预测精度高、计算速度快的特点,能够较准确地描述多种典型工况条件下的实际热误差特性。LS-SVM is an effective tool for machine error modeling.The traditional methods to set the parameters of LS-SVM which determined the modeling accuracy included ten-fold cross validation and grid method.However,using these methods,parameter calculation was complex and prone to low accuracy.Moreover,the LS-SVM model with only one set of parameters was hard to precisely describe the thermal error behaviors under the different work conditions.In order to solve these prob-lems,based on Bayesian evidence framework a novel method was proposed to identify and optimize LS-SVM parameters under multiple working conditions.Three inferring levels of Bayesian evidence framework were used to derive the optimal model parameters corresponding to the different operating conditions.A series of experiments for thermal error modeling verified the validity of this method. LS-SVM model based on Bayesian evidence framework has good generalization ability,accurate pre-diction,and rapid calculation speed,so it can describe the actual thermal error characteristics more ac-curately under multiple work conditions.
关 键 词:贝叶斯证据框架 最小二乘支持向量机(LS-SVM) 热误差建模 多工况 参数优化
分 类 号:TH161[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.116