检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李平[1] 李朴[1] 欧文斌[1] 叶苓[1] 杨小平[1]
出 处:《中国医院管理》2014年第9期31-33,共3页Chinese Hospital Management
基 金:中国人民解放军空军总医院面上基金(kz2013024)
摘 要:目的探讨排队论模型在军队医院门诊超声科设备配置中的应用效果。方法运用现场调查法和排队论模型,计算超声科设备工作强度(ρ),患者排队等待人数(Lq),窗口逗留人数(Ls),平均排队等待时间(Wq),平均逗留时间(Ws),设备空闲概率(P0)患者到达必须等待的概率(P)等运行指标,并对应用排队论模型配置设备前后患者及技师进行满意度调查。结果超声科上下午分别配置6台和3台设备较为合理,在应用排队论模型配置设备后,技师和患者的满意度均得到明显提高(P<0.05)。结论利用排队论的方法可以较好地配置超声科设备,为提高服务效率提供科学参考。Objective To discuss the effect after the application of the queuing theory model in the configuration of ultrasound equipments in the military hospital. Methods Applying the on-site investigation and queuing theory model to calculate the intensity of ultrasound service (p), the number of patients waiting in line (Lq), the number of pa~ tients stay in queuing system (Ls), the average waiting time (Wq), the average length of stay (Ws), MD idle probabili- ty (Po), and the probability of queuing when patients arrived (F~, etc, and then making the satisfaction survey for physicians and patients. Results It was reasonable to configure 6 ultrasound equipments in the morning and 3 ultra- sound equipments in the afternoon, and the satisfaction of physicians and patients were both improved (P〈0.05). Conclusion Utilizing the theory model could be useful to provide a basis for ultrasound equipments allocation, and to provide some scientific suggestions for improving medical service efficiency.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117