固着磨料加工高精度碳化硅反射镜粗糙度的人工神经网络研究  被引量:2

Study on the Artificial Neural Network of the RB-SiC Mirror Surface Roughness Fabricated with the Fixed Abrasive Technology

在线阅读下载全文

作  者:王旭[1] 张斌智[1] 

机构地区:[1]中国科学院长春光学精密机械与物理研究所,中国科学院光学系统先进制造技术重点实验室,吉林长春130033

出  处:《光学学报》2014年第13期403-408,共6页Acta Optica Sinica

基  金:国家973计划(2011CB01320005)

摘  要:固着磨料工艺主要针对某空间相机的高精度平面折反镜而开发,分别从微观结构的仿真计算和人工神经网络两个角度对此工艺加工碳化硅反射镜表面粗糙度进行分析。一方面引入了二维粗糙度的在微观结构仿真概念,在人工神网络方面使用双隐层神经网络对固着磨料工艺的加工结果进行了分析,使得网络的性能大幅提高,收敛结果达到了8.4075×10^-5,并对网络性能进行了验证,标准化后的预测集与实验验证集距离偏差为0.2113。完全满足固着磨料工艺对表面粗糙度的预测需求。Fixed abrasive technique mainly aims at the high precision plane of a space camera to fold the mirror. The microcosmic structure simulation calculation and artificial neural networks analysis of the reaction-bonded sintering (RB) SiC mirror surface roughness fabricated with fixed abrasive technique is analyzed. In the microcosmic structure simulation calculation part, the concept of the two-dimensional (2D) surface roughness is introduced. In the artificial neural networks analysis part, the concept of double hidden layer neural network is introduced to analyze the experimental results. The network performance is improved remarkably through training. The last performance value is 8. 4075 ×10^-5. The network performance is validated after training, the error between simulation data and experimental data is 0. 2113, which meets the prediction requirement of the fixed abrasive technique surface roughness.

关 键 词:光学制造 固着磨料 碳化硅 表面粗糙度 人工神经网络 

分 类 号:TN304.05[电子电信—物理电子学] TH703[机械工程—仪器科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象