Tetrolet域利用时空相关性的云图压缩感知重建  被引量:1

Reconstruction of compressed sensing for satellite cloud images using temporal-spatial correlation in the Tetrolet domain

在线阅读下载全文

作  者:何艳[1] 金炜[1] 刘箴[1] 符冉迪[1] 田文哲[1] 

机构地区:[1]宁波大学信息科学与工程学院,浙江宁波315211

出  处:《遥感学报》2014年第5期1034-1047,共14页NATIONAL REMOTE SENSING BULLETIN

基  金:国家自然科学基金(编号:61271399,61373068);宁波市自然科学基金(编号:2011A610192;2013A610055);宁波市国际合作项目(编号:2013D10011);宁波市科技创新团队研究计划(编号:2011B81002);宁波大学科研基金(编号:XYL1200,XKXL1306)~~

摘  要:针对卫星云图数据量大,但传输通道和存储空间相对狭小的问题,本文基于Tetrolet变换,利用相邻时次云图的时空相关性,实现了一种高重构质量的卫星云图压缩感知方法。该方法将善于表达图像方向纹理及边缘信息的Tetrolet变换引入压缩感知的稀疏表示环节,从而很好地体现了卫星云图细节丰富、纹理结构复杂的特性;同时,考虑到卫星云图序列间的相关性,将时间相邻的卫星云图组成图像组,以中间时刻云图作为参考图像,计算其与相邻时次云图的差异,通过在参考图片及序列差异图片间合理分配采样率,获取测量数据,在压缩感知框架下,采用带平滑处理的投影Landweber算法,重构出相邻时次的图像组。实验结果表明,Tetrolet变换适用于卫星云图的稀疏表示,而且图像组时空相关性的利用可显著提高重构云图的视觉效果及客观评价指标;在采样率低于0.2时,红外1、水汽和可见光3个通道重构云图的峰值信噪比(PSNR)较传统方法平均提高了7.48 dB,13.51 dB和6.15 dB。由此可见,本文方法可以通过获取少数随机测量值,重构出高质量的卫星云图,不仅为云图数据的低比特率压缩提供了一种可行的解决方案,而且对于其他序列图像的压缩采样具有借鉴意义。This study aims to balance the contradiction caused by large sateUite cloud image data and the limitations of transmission channels and storage space. We proposed a compressed sensing approach with highly reconstructive quality that utilizes temporal-spatial correlation of adjacent sequence cloud images based on Tetrolet transform. The approach introduces Tetrolet transform into the sparse representation step of compressed sensing for its remarkable representation of important image information, such as directional texture and edge, which can depict the detail and texture structure of satellite cloud images well. Meanwhile, considering the correlation between sequences of the satel- lite images, three adjacent cloud images are bound to form a Group Of Pictures (GOP), in which the intermediate time cloud image is the reference picture, and the difference with its adjacent cloud images is calculated to form the differ- ence images. Finally, GOP is reconstructed by the projected Landweber algorithm with smoothing operation under the compressed sensing fiamework. Experimental results show that Tetrolet transform is appropriate for the sparse repre- sentation of satellite cloud images. The use of the temporal-spatial correlation of GOP can improve the visual quality and quantitative measurements of reconstructed cloud images. When the sampling rate for cloud images of infrared one, water vapor, and visible light channel is lower than 02, the Peak Signal-to-Noise Ratio (PSNR) of the reconstruc- ted images is improved by an average of 7.48 dB, 13.51 dB and 6.15 dB, respectively, compared with that obtained by traditional methods. High-quality cloud image can be reconstructed by obtaining random measurements using the proposed method. This method provides a feasible solution for the low-bit-rate compression of cloud images and is significant for the compressed sampling of other sequence images.

关 键 词:稀疏表示 压缩感知 Tetrolet变换 时空相关性 卫星云图 

分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象